Problems
The SUM problem can be formulated as follows: given four lists A, B, C, D of integer values, compute how many quadruplet (a, b, c, d) ∈ A x B x C x D are such that a + b + c + d = 0. In the following, we assume that all lists have the same size n.
Input
The first line of the input file contains the size of the lists n (this value can be as large as 4000). We then have n lines containing four integer values (with absolute value as large as 228 ) that belong respectively to A, B, C and D.
Output
For each input file, your program has to write the number quadruplets whose sum is zero.
Example #1
6
-45 22 42 -16
-41 -27 56 30
-36 53 -37 77
-36 30 -75 -46
26 -38 -10 62
-32 -54 -6 45
5
Sample Explanation: Indeed, the sum of the five following quadruplets is zero: (-45, -27, 42, 30), (26, 30, -10, -46), (-32, 22, 56, -46),(-32, 30, -75, 77), (-32, -54, 56, 30).
Example #2
5
-2 2 3 -1
-2 -1 4 2
-2 4 -2 5
-2 2 -4 -2
2 -2 0 4
42
Tag
Source
Southwestern Europe 2005, poj 2785